Precyzja to miara, która określa, jak blisko są pomiary względem siebie. Inaczej mówiąc, precyzja mierzy, jak dobrze model rozróżnia pomiędzy prawdziwymi i fałszywymi wynikami.
Precyzja jest definiowana jako stosunek poprawnie sklasyfikowanych diagnoz pozytywnych do liczby wszystkich przypadków testowych sklasyfikowanych przez model jako pozytywne. W praktyce oznacza to, że precyzja modelu wskazuje, jak często model poprawnie rozpoznaje przypadki, które rzeczywiście są pozytywne.
Przykładem może być diagnozowanie chorób. Precyzja modelu w tym przypadku mógłby być określona jako stosunek prawidłowych diagnoz do wszystkich diagnoz, które zostały zrobione, oraz liczby diagnoz, które zostały zrobione, ale były nieprawidłowe.
W naszym przykładzie z ilustracji, aby obliczyć precyzję, bierzemy liczbę prawidłowo wykrytych chorób, czyli 27, i dzielimy przez liczbę wszystkich osób sklasyfikowanych przez model jako chore, czyli 31. Otrzymujemy w zaokrągleniu 87%.