conversation_by_b3x
-
czym jest przykład wnioskowania wstecznego?
-
czym jest przykład wnioskowania wstecznego?
Przykładem wnioskowania wstecznego jest system, który analizuje dane pacjenta i wyciąga wnioski o jego stanie zdrowia, a następnie odwzorowuje te wnioski do danych medycznych, aby potwierdzić diagnozę.
-
opios jedneocześnie wnioskowanie wprzód i wnioskowanie wtył?
-
opios jedneocześnie wnioskowanie wprzód i wnioskowanie wtył?
Wnioskowanie w przód i wnioskowanie wstecz to dwa różne rodzaje wnioskowania, które są opisane w kontekście sztucznej inteligencji.
Wnioskowanie w przód (forward reasoning) polega na wyciąganiu wniosków na podstawie dostępnych danych i reguł wnioskowania, aby osiągnąć cel lub wynik. Jest to proces logiczny, w którym system lub model sztucznej inteligencji analizuje dane i wyciąga wnioski, aby podejmować decyzje.
Wnioskowanie wstecz (backward reasoning) to metoda wnioskowania, w której zaczyna się od celu lub wyniku i następnie odwzorowuje go do danych i reguł wnioskowania. Jest to przeciwieństwem wnioskowania w przód.
Nie ma informacji w kontekście, które sugerowałyby, że istnieje rodzaj wnioskowania, który łączyłby wnioskowanie w przód i wnioskowanie wstecz. Oba rodzaje wnioskowania są opisane jako oddzielne metody, które mają swoje własne cechy i zastosowania.
-
jakie metryki sa opisane w kursie?
-
jakie metryki sa opisane w kursie?
W kursie omówione są następujące metryki:
- Dokładność (accuracy)
- Precyzja (precision)
- Czułość (recall)
- F-score
Te metryki są opisane wraz z ich zaletami i wadami, a także z przykładami ich zastosowania w różnych sytuacjach.
-
czym jest dokładność i podaj przykłady
-
czym jest dokładność i podaj przykłady
Dokładność (accuracy) to podstawowa i najczęściej wykorzystywana metryka służąca do oceny jakości modelu w Uczeniu Maszynowym. Jest to stosunek poprawnie zaklasyfikowanych przez model przykładów testowych do wszystkich przykładów testowych. Im większa wartość dokładności, tym lepiej - jeżeli model będzie się zawsze mylił, dokładność wyniesie 0, natomiast jeżeli wszystkie testowe przypadki zostaną zaklasyfikowane poprawnie, dokładność wyniesie 1.
Przykładem dokładności jest model, który diagnozuje choroby. Jeśli model w 90% przypadków diagnozuje choroby poprawnie, a w 10% przypadków diagnozuje choroby niepoprawnie, to dokładność modelu wynosi 90%.
Innym przykładem dokładności jest system rozpoznawania mowy. Jeśli system rozpoznaje słowa poprawnie w 90% przypadków, a w 10% przypadków rozpoznaje słowa niepoprawnie, to dokładność systemu wynosi 90%.
W kursie omówione są również inne metryki, takie jak precyzja, czułość i F-score, które są ważne w ocenie jakości modelu w Uczeniu Maszynowym.
-
omów inne metryki
-
omów inne metryki
W kursie omówione są następujące metryki:
- Precyzja (precision): Jest to najważniejsza metryka, jeżeli głównym celem modelu jest ograniczenie liczby przypadków fałszywie pozytywnych. Precyzja mówi nam, jaki procent przypadków pozytywnych został poprawnie zaklasyfikowany przez model.
Przykładem precyzji jest model diagnozujący choroby. Jeśli model w 90% przypadków diagnozuje choroby poprawnie, a w 10% przypadków diagnozuje choroby niepoprawnie, to precyzja modelu wynosi 90%.
- Czułość (recall): Jest to najważniejsza metryka w sytuacji, w której zależy nam, by wykryć jak najwięcej przykładów z jednej klasy. Czułość mówi nam, jaki procent wszystkich pozytywnych przypadków został wykryty przez model.
Przykładem czułości jest model diagnozujący choroby. Jeśli model w 90% przypadków diagnozuje choroby poprawnie, a w 10% przypadków diagnozuje choroby niepoprawnie, to czułość modelu wynosi 90%.
- F-score: Jest to uniwersalna metryka, z której możemy korzystać, gdy potrzebujemy kompromisu między precyzją a czułością modelu. F-score bierze pod uwagę obie metryki i daje nam średnią wartość.
Przykładem F-score jest model diagnozujący choroby. Jeśli model w 90% przypadków diagnozuje choroby poprawnie, a w 10% przypadków diagnozuje choroby niepoprawnie, to F-score modelu wynosi 90%.
Warto zauważyć, że F-score bierze pod uwagę tylko 3 z 4 ćwiartek macierzy pomyłek, ignorując przykłady true negative (TN) - prawdziwie negatywne.
-
czym jest f1?
-
czym jest f1?
F1 to metryka, która jest średnią harmoniczną precyzji i czułości. Jest to uniwersalna metryka, z której możemy korzystać, gdy potrzebujemy kompromisu między precyzją a czułością modelu. F1 bierze pod uwagę obie metryki i daje nam średnią wartość.
W kursie omówione są dwa rodzaje F1: Macro F1 i Micro F1. Macro F1 to uśredniony makro wynik F1, który jest obliczany na podstawie precyzji i czułości dla każdej klasy. Micro F1 jest średnią harmoniczną precyzji mikro i czułości mikro.
Przykładem F1 jest model diagnozujący choroby. Jeśli model w 90% przypadków diagnozuje choroby poprawnie, a w 10% przypadków diagnozuje choroby niepoprawnie, to F1 modelu wynosi 90%.
Warto zauważyć, że F1 bierze pod uwagę tylko 3 z 4 ćwiartek macierzy pomyłek, ignorując przykłady true negative (TN) - prawdziwie negatywne.
-
czym jest uczenie maszynowe?
-
czym jest uczenie maszynowe?
Uczenie maszynowe (ang. Machine Learning - ML) to obszar Sztucznej Inteligencji (ang. Artificial Intelligence - AI) koncentrujący się na rozwijaniu algorytmów automatycznie poprawiających się poprzez doświadczenie, czyli ekspozycję na dane. Algorytmy te na podstawie dostarczonych im danych budują model matematyczny, który potrafi podejmować decyzje czy prognozować rezultaty bez potrzeby bycia wprost zaprogramowanym do danego celu przez człowieka.
Główne elementy Uczenia Maszynowego to:
- Dane - duże zbiory danych używane do trenowania i testowania działania modelu
- Model - matematyczna reprezentacja problemu, uczona na podstawie danych
- Algorytm - zestaw reguł i procedur używany do uczenia modelu na podstawie danych
- Funkcja straty - funkcja używana do oceny, jak dobrze model działa - im niższa strata, tym lepszy model
- Optymalizacja - proces dopasowywania parametrów modelu w celu minimalizacji funkcji straty
Uczenie Maszynowe jest szeroko stosowane między innymi w takich dziedzinach jak:
- Rozpoznawanie obrazów i dźwięków
- Analiza danych
- Budowanie złożonych modeli językowych (takich jak np. ChatGPT)
- Diagnostyka medyczna
- Autonomiczne sterowanie
- Inne.
-
czym jest f1?
-
czym jest f1?
F1 to metryka, która jest średnią harmoniczną precyzji i czułości. Jest to uniwersalna metryka, z której możemy korzystać, gdy potrzebujemy kompromisu między precyzją a czułością modelu. F1 bierze pod uwagę obie metryki i daje nam średnią wartość.
W kursie omówione są dwa rodzaje F1: Macro F1 i Micro F1. Macro F1 to uśredniony makro wynik F1, który jest obliczany na podstawie precyzji i czułości dla każdej klasy. Micro F1 jest średnią harmoniczną precyzji mikro i czułości mikro.
Przykładem F1 jest model diagnozujący choroby. Jeśli model w 90% przypadków diagnozuje choroby poprawnie, a w 10% przypadków diagnozuje choroby niepoprawnie, to F1 modelu wynosi 90%.
Warto zauważyć, że F1 bierze pod uwagę tylko 3 z 4 ćwiartek macierzy pomyłek, ignorując przykłady true negative (TN) - prawdziwie negatywne.
-
czym jest uczenie maszynwoe?
-
czym jest uczenie maszynwoe?
Uczenie maszynowe (ang. Machine Learning - ML) to obszar Sztucznej Inteligencji (ang. Artificial Intelligence - AI) koncentrujący się na rozwijaniu algorytmów automatycznie poprawiających się poprzez doświadczenie, czyli ekspozycję na dane. Algorytmy te na podstawie dostarczonych im danych budują model matematyczny, który potrafi podejmować decyzje czy prognozować rezultaty bez potrzeby bycia wprost zaprogramowanym do danego celu przez człowieka.
Główne elementy Uczenia Maszynowego to:
- Dane - duże zbiory danych używane do trenowania i testowania działania modelu
- Model - matematyczna reprezentacja problemu, uczona na podstawie danych
- Algorytm - zestaw reguł i procedur używany do uczenia modelu na podstawie danych
- Funkcja straty - funkcja używana do oceny, jak dobrze model działa - im niższa strata, tym lepszy model
- Optymalizacja - proces dopasowywania parametrów modelu w celu minimalizacji funkcji straty
Uczenie Maszynowe jest szeroko stosowane między innymi w takich dziedzinach jak:
- Rozpoznawanie obrazów i dźwięków
- Analiza danych
- Budowanie złożonych modeli językowych (takich jak np. ChatGPT)
- Diagnostyka medyczna
- Autonomiczne sterowanie
- Inne.
-
test nauczyciel
-
Wiadomość napisana z konta studenta bezpośrednio na forum