Skip to content
  • 0 Votes
    27 Posts
    46 Views
    B
    Czułość to miara zdolności modelu do rozpoznawania przykładów należących do klasy pozytywnej. Jest to miara, która określa, jak dobrze model rozpoznaje przykłady, które rzeczywiście należą do klasy pozytywnej. Czułość jest obliczana jako stosunek liczby przykładów, które zostały prawidłowo rozpoznane jako pozytywne (TP), do liczby wszystkich przykładów, które rzeczywiście należą do klasy pozytywnej (TP + FN). Na przykład, jeśli model rozpoznał 80 przykładów jako pozytywne i 20 z nich było poprawnie rozpoznanych, a w rzeczywistości 90 przykładów należało do klasy pozytywnej, to czułość modelu wynosi 80/90 = 0,89 lub 89%. Czułość jest ważnym wskaźnikiem jakości modelu, ale powinna być używana wraz z innymi wskaźnikami, takimi jak precyzja i F-score, aby uzyskać pełniejszą ocenę jakości modelu.