conversation_by_dka
-
mój folder nazywa się "kanarek" a nie "Kanarek" czy to jest problem?
-
mój folder nazywa się "kanarek" a nie "Kanarek" czy to jest problem?
Odpowiedź na pytanie kursanta:
Nie, to nie jest problem. W kursie nie ma żadnych wskazówek, że nazwa folderu powinna być zgodna z nazwą klasy. Właśnie przeczytałem, że w jednym z przykładów nazwa folderu to "lykoi", a w innym "4". Nie ma żadnych wskazówek, że nazwa folderu powinna być zgodna z nazwą klasy. Możesz użyć nazwy folderu "kanarek" i powinno to działać poprawnie.
-
Załóżmy, że korzystając z Google Teachable Machine, trenujemy model dla trzech klas... dlaczego tu powinno być 90?
-
Załóżmy, że korzystając z Google Teachable Machine, trenujemy model dla trzech klas... dlaczego tu powinno być 90?
Odpowiedź na pytanie kursanta:
W Google Teachable Machine, dokładność modelu jest obliczana na podstawie macierzy pomyłek. Gdy trenujemy model dla trzech klas, dokładność jest obliczana dla każdej klasy osobno. W tym przypadku, jeśli model trenuje dla trzech klas, to otrzymasz trzy wartości dokładności: jedną dla każdej klasy.
W przykładzie, który został przedstawiony w kursie, model trenował dla dwóch klas: psów i kotów. Dokładność modelu była obliczana dla każdej klasy osobno, a następnie była obliczana dokładność całego modelu, która była średnią z dokładności dla obu klas.
Jeśli model trenuje dla trzech klas, to otrzymasz trzy wartości dokładności: jedną dla każdej klasy. Nie ma powodu, aby powinna być 90% dokładności w tym przypadku. Dokładność modelu zależy od wielu czynników, takich jak jakość danych, wielkość zbioru danych, a także konfiguracja modelu.
-
co jest częstsze przeuczenie czy niedouczenie modeli?
-
co jest częstsze przeuczenie czy niedouczenie modeli?
Odpowiedź na pytanie kursanta:
W kursie nie ma informacji o tym, które zjawisko jest częstsze: przeuczenie czy niedouczenie modeli. Jednak w jednym z przykładów, opisano przeuczenie jako zjawisko, w którym model za bardzo dostosowuje się do danych treningowych, w efekcie czego nie jest w stanie poprawnie radzić sobie z danymi testowymi. Przykład ten sugeruje, że przeuczenie może być problemem w uczeniu maszynowym.
Warto zauważyć, że przeuczenie jest zjawiskiem, które może wystąpić w przypadku, gdy model jest zbyt skomplikowany lub gdy dane treningowe są zbyt małe. W takim przypadku model może za bardzo dostosować się do danych treningowych, w efekcie czego nie jest w stanie generalizować na nowe dane.
Niedouczenie modeli, z drugiej strony, jest zjawiskiem, które występuje w przypadku, gdy model jest zbyt prosty, by poradzić sobie z danymi treningowymi. W takim przypadku model może nie być w stanie poprawnie klasyfikować nowych danych.
W związku z tym, nie jest możliwe jednoznaczne powiedzenie, które zjawisko jest częstsze: przeuczenie czy niedouczenie modeli. Warto jednak pamiętać, że oba zjawiska mogą wystąpić w przypadku, gdy model jest niewystarczająco skomplikowany lub gdy dane treningowe są zbyt małe.
-
podaj przykład problemu gdzie powiniem uzyc metryki recall
-
podaj przykład problemu gdzie powiniem uzyc metryki recall
Odpowiedź na pytanie kursanta:
Przykładem problemu, w którym powinieneś użyć metryki recall, jest sytuacja, w której zależy nam na wykryciu jak największej liczby przykładów z jednej klasy, nawet jeśli to oznacza błędne zaklasyfikowanie kilku przykładów z innych klas. Przykładem takiego problemu może być wykrywanie chorób we wczesnym stadium, gdzie ważne jest, aby wykryć jak największą liczbę chorych, nawet jeśli to oznacza błędne zaklasyfikowanie kilku zdrowych osób.
W takim przypadku metryka recall jest najważniejsza, ponieważ mierzy, jak dużą część rzeczywiście chorych osób model jest w stanie wykryć. Jeśli model ma wysoką wartość recall, to oznacza, że jest w stanie wykryć większość chorych osób, nawet jeśli to oznacza błędne zaklasyfikowanie kilku zdrowych osób.
-
podaj przykład gdzie F1 jest najlepsze
-
podaj przykład gdzie F1 jest najlepsze
Odpowiedź na pytanie kursanta:
Przykładem, w którym F1 jest najlepsze, jest sytuacja, w której zależy nam na znalezieniu kompromisu pomiędzy precyzją i czułością. F1 jest średnią harmoniczną precyzji i czułości, co oznacza, że jest w stanie uwzględniać zarówno precyzję, jak i czułość.
Przykładem takiego problemu może być klasyfikacja dokumentów, gdzie ważne jest, aby dokumenty były poprawnie zaklasyfikowane, ale również ważne jest, aby nie zostały pominięte żadne ważne dokumenty. W takim przypadku F1 jest najlepsze, ponieważ pozwala na znalezienie kompromisu pomiędzy precyzją i czułością.
Warto zauważyć, że F1 jest szczególnie przydatne w przypadku, gdy klasa pozytywna występuje rzadko w porównaniu z klasą negatywną, jak to opisano w przykładzie z wyszukiwarką informacji.