conversation_by_nkd
-
czym jest f-score
-
czym jest f-score
F-score to miara, która stanowi pewien kompromis pomiędzy precyzją (precision) i czułością (recall). Jest to miara, która ocenia model bardziej obiektywnie niż każda z tych dwóch metryk z osobna. F-score jest często wykorzystywany w dziedzinie wyszukiwania informacji do pomiaru skuteczności wyszukiwania, klasyfikacji dokumentów i klasyfikacji zapytań.
-
czym jest f-score
-
czym jest f-score
F-score to miara, która stanowi pewien kompromis pomiędzy precyzją (precision) i czułością (recall). Jest to miara, która ocenia model bardziej obiektywnie niż każda z tych dwóch metryk z osobna. F-score jest często wykorzystywany w dziedzinie wyszukiwania informacji do pomiaru skuteczności wyszukiwania, klasyfikacji dokumentów i klasyfikacji zapytań.
Warto dodać, że F-score bierze pod uwagę tylko 3 z 4 ćwiartek macierzy pomyłek, ignorując przykłady true negative (TN) - prawdziwie negatywne.
-
Czy poprawnym jest stwierdzenie, że wielkość wsadu odpowiada tylko za uczenie modelu podczas gdy dane testowe nie mają wpływu na ten proces tylko sprawdzają skuteczność modelu?
-
Czy poprawnym jest stwierdzenie, że wielkość wsadu odpowiada tylko za uczenie modelu podczas gdy dane testowe nie mają wpływu na ten proces tylko sprawdzają skuteczność modelu?
Nie, stwierdzenie to nie jest poprawne. Dane testowe mają wpływ na proces uczenia modelu, ponieważ model jest trenowany na danych treningowych, a następnie oceniany na danych testowych. Dane testowe pozwalają ocenić, jak dobrze model jest w stanie generalizować swoje zdolności do nowych danych, a nie tylko do danych, na których został trenowany.
W kontekście opisanym w kursie, dane testowe są używane do oceny dokładności modelu, czyli stosunku poprawnie zaklasyfikowanych przykładów testowych do wszystkich przykładów testowych. Im większa dokładność modelu, tym lepiej on jest w stanie generalizować swoje zdolności do nowych danych.
Dane testowe nie tylko sprawdzają skuteczność modelu, ale także pomagają w identyfikacji przeuczenia, czyli sytuacji, w której model za bardzo dostosowuje się do danych treningowych i nie jest w stanie poprawnie radzić sobie z danymi testowymi.
-
Czy poprawnym jest stwierdzenie, że wielkość wsadu odpowiada tylko za uczenie modelu podczas gdy dane testowe nie mają wpływu na ten proces tylko sprawdzają skuteczność modelu?
-
Czy poprawnym jest stwierdzenie, że wielkość wsadu odpowiada tylko za uczenie modelu podczas gdy dane testowe nie mają wpływu na ten proces tylko sprawdzają skuteczność modelu?
Nie, stwierdzenie to nie jest poprawne. Dane testowe mają wpływ na proces uczenia modelu, ponieważ model jest trenowany na danych treningowych, a następnie oceniany na danych testowych. Dane testowe pozwalają ocenić, jak dobrze model jest w stanie generalizować swoje zdolności do nowych danych, a nie tylko do danych, na których został trenowany.
W kontekście opisanym w kursie, dane testowe są używane do oceny dokładności modelu, czyli stosunku poprawnie zaklasyfikowanych przykładów testowych do wszystkich przykładów testowych. Im większa dokładność modelu, tym lepiej on jest w stanie generalizować swoje zdolności do nowych danych.
Dane testowe nie tylko sprawdzają skuteczność modelu, ale także pomagają w identyfikacji przeuczenia, czyli sytuacji, w której model za bardzo dostosowuje się do danych treningowych i nie jest w stanie poprawnie radzić sobie z danymi testowymi.
-
W jaki sposó zmienianie tej wartości wpływa na trenowanie modelu?
-
W jaki sposó zmienianie tej wartości wpływa na trenowanie modelu?
Wartość funkcji straty (ang. loss function) jest kluczowym elementem procesu trenowania modelu. Jest to miara, która określa różnicę pomiędzy prawidłową odpowiedzią a odpowiedzią zwróconą przez model. Im niższa wartość funkcji straty, tym lepiej model radzi sobie z danymi.
Zmiana wartości funkcji straty wpływa na proces trenowania modelu, ponieważ model stara się minimalizować wartość tej funkcji. Im niższa wartość funkcji straty, tym model jest lepiej w stanie generalizować swoje zdolności do nowych danych.
W Google Teachable Machine, w sekcji "Dla zaawansowanych" możemy podejrzeć wykres, jak zmieniała się wartość funkcji straty dla naszego modelu w kolejnych epokach procesu trenowania. Na wykresie zaznaczono dwie linie - niebieską dla zbioru uczącego i pomarańczową dla zbioru testowego. Wzajemna relacja pomiędzy nimi będzie istotna w kolejnej części kursu.
W związku z tym, zmiana wartości funkcji straty może wpłynąć na proces trenowania modelu, ale nie jest to jedyne czynniki, które wpływają na to, jak dobrze model radzi sobie z danymi. Inne czynniki, takie jak wielkość wsadu, sposób trenowania modelu i jakość danych, również mają wpływ na wyniki modelu.
-
W jaki sposó zmienianie tej wartości wpływa na trenowanie modelu?
-
W jaki sposó zmienianie tej wartości wpływa na trenowanie modelu?
Zmiana wartości funkcji straty wpływa na proces trenowania modelu, ponieważ model stara się minimalizować wartość tej funkcji. Im niższa wartość funkcji straty, tym model jest lepiej w stanie generalizować swoje zdolności do nowych danych.
Wartość funkcji straty jest kluczowym elementem procesu trenowania modelu. Jest to miara, która określa różnicę pomiędzy prawidłową odpowiedzią a odpowiedzią zwróconą przez model. Im niższa wartość funkcji straty, tym lepiej model radzi sobie z danymi.
W Google Teachable Machine, w sekcji "Dla zaawansowanych" możemy podejrzeć wykres, jak zmieniała się wartość funkcji straty dla naszego modelu w kolejnych epokach procesu trenowania. Na wykresie zaznaczono dwie linie - niebieską dla zbioru uczącego i pomarańczową dla zbioru testowego. Wzajemna relacja pomiędzy nimi będzie istotna w kolejnej części kursu.
-
Wytłumacz mi na czym polega wielkość wsadu
-
Wytłumacz mi na czym polega wielkość wsadu
Wielkość wsadu (ang. batch size) to rozmiar porcji treningowej, czyli liczba przykładów, jaką model otrzymuje na raz do trenowania w pojedynczej iteracji swojego działania. Im większa wielkość wsadu, tym więcej zasobów obliczeniowych jest potrzebnych, by ukończyć pojedynczą epokę, ale potrzeba mniej epok, by osiągnąć zadowalające efekty uczenia się.
-
Wytłumacz mi na czym polega wielkość wsadu
-
Wytłumacz mi na czym polega wielkość wsadu
Wielkość wsadu (ang. batch size) to rozmiar porcji treningowej, czyli liczba przykładów, jaką model otrzymuje na raz do trenowania w pojedynczej iteracji swojego działania. Im większa wielkość wsadu, tym więcej zasobów obliczeniowych jest potrzebnych, by ukończyć pojedynczą epokę, ale potrzeba mniej epok, by osiągnąć zadowalające efekty uczenia się.
Na przykład, w naszym przypadku, cały zbiór uczący składa się ze 170 przykładów. Domyślnie mamy ustaloną wielkość wsadu na 16, co oznacza, że model będzie miał podawane do nauki po 16 przykładów na raz. W ramach jednej epoki (pełnego przejścia przez wszystkie przykłady treningowe) potrzebne będzie 11 wsadów - 10 razy po 16 oraz 10 pozostałych przykładów w ostatnim, jedenastym wsadzie.
-
Czy w Google Teachable Machine mogę dostoswać procent danych testowych?
-
Czy w Google Teachable Machine mogę dostoswać procent danych testowych?
Nie, w Google Teachable Machine nie możesz dostosować procentu danych testowych. Dane są automatycznie dzielone na zbiór uczący i zbiór testowy w proporcji 85:15 i nie da się ręcznie zmienić tej proporcji.
-
Jak można rozwiązać problem przypadku granicznego między klasami?
-
Jak można rozwiązać problem przypadku granicznego między klasami?
W przypadku rozwiązywania problemu przypadku granicznego między klasami, możemy wykorzystać dwie metody:
- Dodanie dodatkowych danych, w tym przypadku z ich prawidłową, jednoznaczną identyfikacją, i poszukiwanie w nich więcej podobnych przypadków granicznych, a następnie dodanie ich do prawidłowych dla nich klas. Musi się ich jednak zebrać więcej niż kilka, by nasze działanie mogło odnieść skutek.
- Stworzenie klasy pośredniej, w tym wypadku np. "Nieokreślone", i umieszczenie w niej wszystkich trudnych przypadków.
Te metody mogą pomóc w poprawie dokładności modelu w przypadku rozpoznawania przypadków granicznych między klasami.