Skip to content
  • Categories
  • Recent
  • Tags
  • Popular
  • World
  • Users
  • Groups
Skins
  • Light
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • Default (No Skin)
  • No Skin
Collapse

Eduexe Forum

  1. Home
  2. Wstęp do uczenia maszynowego_2d4990663f722666
  3. conversation_by_sby

conversation_by_sby

Scheduled Pinned Locked Moved Wstęp do uczenia maszynowego_2d4990663f722666
sby2d4990663f722666wstęp do uczenia maszynowego
19 Posts 3 Posters 15 Views
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • S Offline
    S Offline
    student_905_sby
    wrote on last edited by
    #10

    co się stanie jeśli użyjemy wyników ze zbioru testowego w trakcie uczenia

    B 1 Reply Last reply
    0
    • S student_905_sby

      co się stanie jeśli użyjemy wyników ze zbioru testowego w trakcie uczenia

      B Offline
      B Offline
      bot_external
      wrote on last edited by
      #11

      Jeśli użyjemy wyników ze zbioru testowego w trakcie uczenia, model będzie mógł dostosować się do tych wyników i poprawić swoją dokładność w klasyfikacji. Jednak to może również spowodować przeuczenie (overfitting), ponieważ model będzie się za bardzo dostosowywał do danych testowych, a nie do ogólnych tendencji w danych.

      W opisie korzystania z Google Teachable Machine (GTM) jest napisane: "Obserwując wykres funkcji straty, możemy czasem dostrzec, że choć dla zbioru uczącego jej wartość systematycznie maleje w każdej kolejnej epoce, to dla zbioru testowego nie dość, że strata przestaje w którymś momencie maleć, to nawet zaczyna rosnąć. Taki wykres jest świadectwem tego, że w przypadku danego modelu mamy do czynienia z przeuczeniem."

      Oznacza to, że jeśli użyjemy wyników ze zbioru testowego w trakcie uczenia, model może przeuczyć się i nie będzie w stanie poprawnie klasyfikować danych nowych.

      1 Reply Last reply
      1
      • S Offline
        S Offline
        student_905_sby
        wrote on last edited by
        #12

        Jak rozpoznać że tempo uczenia się jest za duże

        B 1 Reply Last reply
        0
        • S student_905_sby

          Jak rozpoznać że tempo uczenia się jest za duże

          B Offline
          B Offline
          bot_external
          wrote on last edited by
          #13

          Jeśli chodzi o rozpoznanie, że tempo uczenia się jest za duże, w kontekście nie ma bezpośrednich informacji na ten temat. Jednak w opisie korzystania z Google Teachable Machine (GTM) jest napisane, że zbyt duża korekta może oznaczać, że "przeskoczymy" przez oczekiwane rozwiązanie.

          Przykładowo, w jednym z przykładów jest napisane, że jeśli stała uczenia się wynosiłaby 1, to w kolejnym kroku nasz model zwróci wynik 7,5, który nie jest ani trochę bliższy naszemu oczekiwanemu rozwiązaniu, niż 6,5, z którego startowaliśmy.

          Oznacza to, że zbyt duże tempo uczenia się może spowodować, że model "przeskoczy" przez oczekiwane rozwiązanie i nie będzie w stanie poprawnie go osiągnąć.

          1 Reply Last reply
          -1
          • S Offline
            S Offline
            student_905_sby
            wrote on last edited by
            #14

            która metryka jest najlepsza dla danych medycznych w których false negative są bardzo bardzo złe

            B 1 Reply Last reply
            0
            • S student_905_sby

              która metryka jest najlepsza dla danych medycznych w których false negative są bardzo bardzo złe

              B Offline
              B Offline
              bot_external
              wrote on last edited by
              #15

              Odpowiedź na to pytanie jest zawarta w kontekście. W jednym z fragmentów tekstu jest napisane: "Czułość (recall) - jest najważniejszą metryką w sytuacji, w której zależy nam, by wykryć jak najwięcej przykładów z jednej klasy (a więc ograniczamy liczbę przypadków fałszywie negatywnych) - przykładowo, celem modelu jest wykrycie we wczesnym stadium choroby, która niewykryta staje się bardzo niebezpieczna, chcemy więć wykryć na pewno wszystkich chorych, nawet jeżeli błędnie zaklasyfikujemy i wyślemy w efekcie na dodatkowe badania również kilka zdrowych osób - czułość modelu powinna być jak najwyższa"

              Oznacza to, że w przypadku danych medycznych, gdzie false negative są bardzo złe, metryką najlepszą jest czułość (recall), ponieważ jest ona najważniejszą metryką w sytuacji, w której zależy nam na wykryciu jak największej liczby przykładów z jednej klasy, czyli w tym przypadku chorych osób.

              1 Reply Last reply
              1
              • S Offline
                S Offline
                student_905_sby
                wrote on last edited by
                #16

                czy da się skorzystać z tych metryk (accuracy, precision, recall) w trakie tenowania

                B 1 Reply Last reply
                0
                • S student_905_sby

                  czy da się skorzystać z tych metryk (accuracy, precision, recall) w trakie tenowania

                  B Offline
                  B Offline
                  bot_external
                  wrote on last edited by
                  #17

                  Tak, można skorzystać z tych metryk (accuracy, precision, recall) w trakcie trenowania modelu. Jednak, jak wspomniano w kontekście, dokładność (accuracy) może być mylącą metryką dla niezbalansowanych zbiorów danych, ponieważ ignoruje przykłady true negative (TN).

                  W trakcie trenowania modelu, można monitorować wartości tych metryk, aby ocenić, jak dobrze model się uczy. Jednak, jak wspomniano w kontekście, zbyt duże tempo uczenia się może spowodować przeuczenie (overfitting), a zbyt małe tempo uczenia się może spowodować, że model nie będzie w stanie poprawnie klasyfikować danych nowych.

                  Dlatego, w trakcie trenowania modelu, ważne jest, aby monitorować wartości tych metryk i dostosować parametry uczenia się, aby uniknąć przeuczenia i osiągnąć najlepsze wyniki.

                  1 Reply Last reply
                  -1
                  • S Offline
                    S Offline
                    student_905_sby
                    wrote on last edited by
                    #18

                    jkie pzpadki ingoruje f-scr?/?

                    B 1 Reply Last reply
                    0
                    • S student_905_sby

                      jkie pzpadki ingoruje f-scr?/?

                      B Offline
                      B Offline
                      bot_external
                      wrote on last edited by
                      #19

                      Odpowiedź na to pytanie jest zawarta w kontekście. W jednym z fragmentów tekstu jest napisane: "Podobnie jak dokładność (accuracy) i precyzja (precision), czułość (recall) nie zawsze jest metryką dobrze opisującą model, ponieważ jest właściwie 'ślepa' na jedną z klas."

                      Oznacza to, że F-score może ignorować przypadki, które są trudne do sklasyfikowania, ponieważ jest on oparty na precyzji i czułości.

                      1 Reply Last reply
                      1
                      Reply
                      • Reply as topic
                      Log in to reply
                      • Oldest to Newest
                      • Newest to Oldest
                      • Most Votes


                      • Login

                      • Don't have an account? Register

                      Powered by NodeBB Contributors
                      • First post
                        Last post
                      0
                      • Categories
                      • Recent
                      • Tags
                      • Popular
                      • World
                      • Users
                      • Groups