conversation_by_4mq
-
Jeśli istnieją zbiory testowe i treningowe, to czym jest zbiór walidacyjny?
-
Jeśli istnieją zbiory testowe i treningowe, to czym jest zbiór walidacyjny?
-
Jeśli istnieją zbiory testowe i treningowe, to czym jest zbiór walidacyjny?
-
Jeśli istnieją zbiory testowe i treningowe, to czym jest zbiór walidacyjny?
-
Jeśli istnieją zbiory testowe i treningowe, to czym jest zbiór walidacyjny?
-
Czym jest zbiór walidacyjny?
-
Czym jest zbiór walidacyjny?
Odpowiedź na pytanie kursanta:
Zbiór walidacyjny (ang. validation set) to zbiór danych, który jest używany do oceny jakości modelu w czasie uczenia się. Jest to zbiór danych, który jest niezależny od zbioru szkoleniowego (train set) i zbioru testowego (test set). Zbiór walidacyjny służy do oceny, jak dobrze model radzi sobie z danymi, które nie są używane do uczenia się.
Zbiór walidacyjny jest często używany wraz z zbiorem testowym do oceny jakości modelu. Zbiór walidacyjny jest używany do oceny, jak dobrze model radzi sobie z danymi, które nie są używane do uczenia się, podczas gdy zbiór testowy jest używany do oceny, jak dobrze model radzi sobie z danymi, które nie są używane do uczenia się i nie są znane modelowi.
Przykładem użycia zbioru walidacyjnego może być sytuacja, w której model jest używany do przewidywania wyników dla pacjentów z chorobą. Zbiór szkoleniowy zawiera dane dla 90% pacjentów, zbiór testowy zawiera dane dla 5% pacjentów, a zbiór walidacyjny zawiera dane dla 5% pacjentów. Model jest używany do przewidywania wyników dla pacjentów z chorobą, a zbiór walidacyjny jest używany do oceny, jak dobrze model radzi sobie z danymi, które nie są używane do uczenia się.
-
A jaką najlepiej proporcję zastosować między tymi trzema zbiorami?
-
A jaką najlepiej proporcję zastosować między tymi trzema zbiorami?
Odpowiedź na pytanie kursanta:
Proporcja między zbiorem szkoleniowym, zbiorem walidacyjnym i zbiorem testowym nie jest ustalona i może zależeć od konkretnego problemu i danych. Jednak ogólnie przyjmuje się, że zbiór szkoleniowy powinien stanowić około 70-80% danych, zbiór walidacyjny około 10-20% danych, a zbiór testowy około 10-20% danych.
Przykładem może być sytuacja, w której mamy 1000 danych. Zbiór szkoleniowy może zawierać 700-800 danych, zbiór walidacyjny 100-200 danych, a zbiór testowy 100-200 danych.
Warto zauważyć, że proporcja między zbiorem szkoleniowym, zbiorem walidacyjnym i zbiorem testowym może być dostosowana do konkretnego problemu i danych. Ważne jest, aby zbiór szkoleniowy był wystarczająco duży, aby model mógł się nauczyć, a zbiór testowy był wystarczająco duży, aby model mógł być oceniony.
Jeśli chodzi o zbiór walidacyjny, to jego głównym celem jest ocena jakości modelu w czasie uczenia się. Zbiór walidacyjny powinien być wystarczająco duży, aby model mógł być oceniony, ale nie powinien być zbyt duży, aby nie przeszkadzał modelowi w uczeniu się.
Warto również zauważyć, że zbiór walidacyjny może być używany do oceny jakości modelu w różnych etapach uczenia się. Na przykład, zbiór walidacyjny może być używany do oceny jakości modelu po każdym etapie uczenia się, aby upewnić się, że model jest w stanie się uczyć i poprawiać swoją jakość.
-
Przytocz jeszcze jakieś inne metryki oprócz dokładności, precyzji, czułości oraz F-score, którą mogą być używane do klasyfikacji
-
Przytocz jeszcze jakieś inne metryki oprócz dokładności, precyzji, czułości oraz F-score, którą mogą być używane do klasyfikacji
Oprócz dokładności, precyzji, czułości i F-score, istnieją inne metryki, które mogą być używane do klasyfikacji. Jedną z nich jest metryka AUC-ROC (Area Under the Receiver Operating Characteristic Curve), która określa zdolność modelu do rozróżniania między klasami.
Metryka AUC-ROC jest wyrażona jako wartość między 0 a 1, gdzie 1 oznacza, że model jest w stanie idealnie rozróżnić między klasami, a 0 oznacza, że model nie jest w stanie rozróżnić między klasami.
Inną metryką jest metryka F1-score, która jest podobna do F-score, ale jest bardziej wrażliwa na błędy fałszywie pozytywne. F1-score jest obliczany jako średnia harmoniczna precyzji i czułości.
Metryka Matthews, znana również jako metryka MCC (Matthews Correlation Coefficient), jest inna metryka, która określa zdolność modelu do rozróżniania między klasami. Metryka Matthews jest wyrażona jako wartość między -1 a 1, gdzie 1 oznacza, że model jest w stanie idealnie rozróżnić między klasami, a -1 oznacza, że model nie jest w stanie rozróżnić między klasami.
Warto zauważyć, że te metryki mogą być używane w różnych sytuacjach, w zależności od konkretnego problemu i danych.
-
To czym się różnią F1 oraz F? W obu przypadkach nie liczymy średniej harmonicznej tak samo czasem?
-
To czym się różnią F1 oraz F? W obu przypadkach nie liczymy średniej harmonicznej tak samo czasem?
Odpowiedź na pytanie kursanta:
F1 i F są dwoma różnymi metrykami, które są używane do oceny jakości modelu klasyfikacyjnego. F1 jest średnią harmoniczną precyzji i czułości, podczas gdy F jest średnią harmoniczną precyzji i czułości mikro.
Główną różnicą między F1 i F jest to, że F1 jest używany w klasyfikacji wieloklasowej, podczas gdy F jest używany w klasyfikacji binarnej. W klasyfikacji wieloklasowej, F1 jest obliczany jako średnia harmoniczna precyzji i czułości dla każdej klasy, podczas gdy F jest obliczany jako średnia harmoniczna precyzji i czułości mikro.
W przypadku F1, precyzja i czułość są obliczane dla każdej klasy osobno, a następnie są one łączone w średnią harmoniczną. W przypadku F, precyzja i czułość mikro są obliczane jako średnia harmoniczna precyzji i czułości dla wszystkich klas.
Warto zauważyć, że F1 i F są dwoma różnymi metrykami, które mają różne cechy i wady. F1 jest bardziej wrażliwy na błędy fałszywie pozytywne, podczas gdy F jest bardziej wrażliwy na błędy fałszywie negatywne.
Przykładem użycia F1 i F może być sytuacja, w której mamy model klasyfikacyjny, który jest używany do przewidywania wyników dla pacjentów z chorobą. W tym przypadku, F1 może być używany do oceny jakości modelu w klasyfikacji wieloklasowej, podczas gdy F może być używany do oceny jakości modelu w klasyfikacji binarnej.
-
Co się kryje za pojęciem czułości miko?
-
Co się kryje za pojęciem czułości mikro?
-
Co się kryje za pojęciem czułości mikro?
-
A czym jest ta wspomniana wcześniej czułość mikro?
-
A czym jest ta wspomniana wcześniej czułość mikro?
Czułość mikro (ang. micro recall) to miara, która określa, jak dobrze model klasyfikacyjny jest w stanie wykryć wszystkie przykłady danej klasy. Jest to miara, która jest obliczana jako stosunek liczby prawidłowo sklasyfikowanych przykładów danej klasy do liczby wszystkich przykładów danej klasy.
W przeciwieństwie do czułości makro (ang. macro recall), która jest obliczana jako średnia harmoniczna czułości dla wszystkich klas, czułość mikro jest obliczana dla każdej klasy osobno.
Przykładem użycia czułości mikro może być sytuacja, w której mamy model klasyfikacyjny, który jest używany do przewidywania wyników dla pacjentów z chorobą. W tym przypadku, czułość mikro może być używana do oceny, jak dobrze model jest w stanie wykryć wszystkie przykłady pacjentów z chorobą.
Warto zauważyć, że czułość mikro jest często używana w klasyfikacji binarnej, podczas gdy czułość makro jest często używana w klasyfikacji wieloklasowej.